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Abstract
The aim of this topical review is a systematic and concise presentation of the results of a series
of theoretical works on the quantum dynamics of two-spin-qubit systems towards the
elaboration of a physical mechanism of the quantum information transfer between two
spin-qubits. For this purpose the main attention is paid to exactly solvable models of
two-spin-qubit systems, since the analytical expressions of the elements of their reduced density
matrices explicitly exhibit the mutual dependence of the quantum information encoded into the
spin-qubits. The treatment of their decoherence due to the interaction with the environment is
performed in the Markovian approximation. Rate equations for axially symmetric systems of
two coupled spin-qubits non-interacting, as well as interacting, with the environment are exactly
solved. It is shown how the solutions of rate equations demonstrate the physical mechanism of
the quantum information exchange between the spin-qubits. This mechanism holds also in all
two-spin-qubit systems whose rate equations can be solved only by means of numerical
calculations. Exact solutions of rate equations for two uncoupled spin-qubits interacting with
two separate environments reveal an interesting physical phenomenon in the time evolution of
the qubit–qubit entanglement generated by their interaction with the environments: the
entanglement sudden death and revival. A two-spin-qubit system with an asymptotically
decoherence free subspace was also explicitly constructed. The presented calculations and
reasonings can be extended for application to the study of spin-qubit chains or networks.
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1. Introduction

A basic element of devices and systems for processing
quantum information (QI) is the quantum bit or qubit for
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short [1]. Each qubit is a two-state quantum system. It
is usually also called a two-level system with the tacit
understanding that both levels are non-degenerate. The QI
encoded into a qubit is its two-component wavefunction (for
a pure state) or its 2 ×2 density matrix (for a mixed state). The
simplest model of the QI transfer from a qubit to another one
is that inside a two-qubit system—a double qubit [1, 2]. The
present paper is a review of theoretical works devoted to the
study of systems of two interacting qubits for elaborating the
physical basis of the QI transfer between them.

There are many types of two-level quantum systems with
different physical structures: two energy levels of a spin
1/2 magnetic particle in a constant magnetic field, a two-
level atom, the lowest energy exciton state and the ground
state in a semiconductor quantum dot etc. Each spin 1/2
magnetic particle is called a spin-qubit. For definiteness we
chose to study two-spin-qubit systems [3–19]. However, there
are many other systems of two interacting qubits whose total
Hamiltonian can be represented in the same form as that of a
two-spin-qubit system [20–26]. For all two-qubit systems of
this kind, the reasonings concerning equivalent two-spin-qubit
systems can be applied directly.

The interactions between two spin-qubits may have
different mechanisms: direct spin–spin couplings (Heisenberg
magnetic exchange interactions, magnetic dipole–dipole
interactions, etc), interactions through the intermediary of
a spin chain, a spin lattice or other spin systems, and
also the effective spin–spin coupling in electrostatically
coupled quantum dots [4]. We review the results of the
studies on systems of two spin-qubits with their spin–spin
couplings. Besides this strong coupling there also exists a
weak interaction between qubits and the environment which
causes energy dissipation and the dephasing of their coherent
oscillations [5, 6, 11–13, 16, 26–35]. Therefore, the total
physical system consists of two interacting subsystems, one of
them is a two-spin-qubit subsystem and the other subsystem is
the environment.

It is natural and convenient to use each product of two
basis vectors of the Hilbert spaces of two above-mentioned
subsystems as a basis vector of the Hilbert space of the total
physical system. The trace of its density matrix ρtot over the
pair of indices labeling state vectors of the environment is a
4 × 4 matrix ρ called the reduced density matrix, describing
the time evolution of the two-spin-qubit subsystem in the
presence of its interaction with the environment. From the von
Neumann equation for ρtot there follows a system of integro-
differential rate equations (called also the master equations),
each of which expresses a time derivative of a matrix element
of ρ at a time t > 0 in the form of the sum of a linear
combination of matrix elements of ρ at the same time t and
an integral of another linear combination of elements of ρ
with respect to the time variable in the interval from 0 to
t : the quantum dynamical equations for the reduced density
matrix is non-Markovian [35–43]. However, if the interaction
of spin-qubits with the environment is weak and the variation
of the physical fields in the environment is slow, then one can
assume the Markovian approximation [44, 45]: replace values
of matrix elements of ρ in the integral from 0 to t by their

values at t and subsequently extend the integral to infinity.
In this approximation rate equations become linear differential
equations for the elements of the reduced density matrix ρ. The
present review is limited to this approximation.

In section 2 the general theories of the decoherence of two-
spin-qubit systems in the Markovian approximation [44, 45],
as well as in the Born–Markov approximation [46–48] as
a special case of the Markovian one, are presented. The
systems of rate equations for elements of reduced density
matrices ρ in these approximations are derived. In section 3
the solutions of rate equations for systems of two coupled
spin-qubits without an interaction with the environment are
derived and the physical interpretation of the expressions of
these solutions is proposed. Section 4 is devoted to the study
of two uncoupled spin-qubits interacting with the environment.
Due to this interaction, the environment mediates an indirect
effective interaction between two spin-qubits which may cause
an interesting physical phenomenon: the entanglement sudden
death and revival. Solutions of rate equations for several
special systems of two coupled spin-qubits interacting with
the environment are established in section 5. Section 6 is
the conclusion. Throughout this work the unit system with
h̄ = c = 1 is used.

2. Rate equations in Markovian approximation

The exact quantum dynamics of a two-spin-qubit system
interacting with the environment is governed by the von
Neumann equation for the total density matrix ρtot of
the complex system consisting of two spin-qubits and the
environment

i
dρtot

dt
= [Htot, ρtot], (1)

where Htot is its total Hamiltonian

Htot = H + HE + Hint, (2)

H and HE are Hamiltonians of two separate subsystems: those
of two-spin-qubits and the environment, respectively, Hint is
the Hamiltonian of their interaction. The quantum dynamics
of the two-spin-qubit subsystem, also called two-spin-qubit
system in the sequel, in the presence of its interaction with the
environment is described by the reduced density matrix ρ. It is
a 4 × 4 matrix and can be represented as a linear combination
of 15 generators �A of the SU(4) group

ρ = 1
4 +

∑

A

�AρA. (3)

In the Markovian approximation from equation (1) one
can derive the following equation for the reduced density
matrix of the two-spin-qubit system

dρ

dt
= −i[H, ρ] + Lρ (4)

with some linear operator L called the Liouvillian superopera-
tor. This linear operator consists of two parts:

Lρ = L(1)ρ + L(2)ρ, (5)
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one of which, L(1)ρ, is the effect of the renormalization
of energy levels leading to the frequency shifts (Lamb
shifts) and the other part, L(2)ρ, is a completely positive
operator describing the dissipative and dephasing actions of the
environment. L(1)ρ can be expressed as the addition of a new
term δH to the Hamiltonian

L(1)ρ = −i[δH, ρ]. (6)

δH has following general form

δH = 1
2

∑

A

�Ah A (7)

with real constants h A. Gorini et al [49] have rigorously
derived the general formula for L(2)ρ:

L(2)ρ = 1
2

∑

AB

ξAB {[�A, ρ�
+
B ] + [�Aρ, �

+
B ]}, (8)

where ξAB are the elements of a 15 × 15 positive matrix,

ξAB = ξ s
AB + iξa

AB , ξ s
AB = ξ s

B A, ξa
AB = −ξa

B A,

(9)
ξ s

AB and ξa
AB being real constants. A special case of

equation (8) is the Linblad formula [50]

L(2)ρ = 1
2

∑

A

ξA{[�A, ρ�
+
A ] + [�Aρ, �

+
A ]}, (10)

which was often used for the study of the quantum systems
with decoherence.

The Hamiltonian of the interaction of qubits with the
environment Hint can be represented in the form

Hint =
∑

μν

|μ〉Kμν〈ν|, (11)

where operators Kμν in the Hilbert space of the state vectors of
the environment are expressed in terms of quantum operators
of the environment in the Schrödinger picture. We chose Kμν

to have a vanishing statistical average over all the states of the
environment at a given temperature T

〈Kμν〉β = 0, (12)

where β = kT, k is the Boltzmann constant, and 〈· · ·〉β de-
notes the statistical average. In the second (lowest) order of
the perturbation theory with respect to interaction Hamilto-
nian (11)—the Born–Markov approximation, the explicit form
of Liouvillian superoperator Lρ can be established in the
framework of the Bloch–Redfield formalism [46–48]. Its ma-
trix elements (Lρ)μν ,

Lρ =
∑

μν

|μ〉(Lρ)μν〈ν|, (13)

are expressed by the Redfield formula

(Lρ)μν = −
∑

στ

Rμνστ ρστ (14)

with the Redfield tensor determined by following relations

Rμνστ = δντ
∑

λ

�
(+)
μλλσ + δμσ

∑

λ

�
(−)
τλλν − �(+)τνμσ − �(−)τνμσ ,

(15)

�(+)μσντ =
∫ ∞

0
dt e−iωντ t 〈Kμσ (t)Kντ (0)〉β,

�(−)μσντ =
∫ ∞

0
dt e−iωμσ t〈Kμσ (0)Kντ (t)〉β ,

(16)

where ωμσ is the difference of the energies of states ‘μ’ and
‘σ ’, ωμσ = Eμ−Eσ , Kμσ (t) is operator Kμσ in the interaction
picture

Kμσ (t) = eiHEt Kμσ e−iHEt . (17)

Since the interaction Hamiltonian is hermitian, operators Kμσ

must satisfy the condition

K +
σμ = Kμσ . (18)

From this condition it is straightforward to derive a relation for
the matrix elements (16):

(�(+)μσντ )
∗ = �(−)τνσμ, (19)

and also following hermiticity property of Redfield tensor:
(
Rνμστ

)∗ = Rμντσ . (20)

For studying rate equations it is convenient to use
hermitian generators �A

�+
A = �A. (21)

We chose them to satisfy condition

Tr(�A�B) = 4δAB (22)

and denote by f ABC the corresponding structure constants of
the SU(4) group

[�A, �B ] = 2i
∑

C

fABC�C . (23)

Matrices Lρ and L(i)ρ are expressed in terms of �A by
formulae similar to equation (3)

Lρ =
∑

A

�A(Lρ)A, L(i)ρ =
∑

A

�A(L
(i)ρ)A. (24)

Then the general formulae (5)–(8) can be rewritten in the new
forms

(Lρ)A = (L(1)ρ)A + (L(2)ρ)A, (25)

(L(1)ρ)A =
∑

BC

f ACB hCρB , (26)

(L(2)ρ)A = −λ̃A −
∑

B

λ̃ABρB , (27)

where
λ̃A = − 1

16

∑

CD

ξCD Tr{�A[�C , �D]}, (28)

λ̃AB = − 1
8

∑

CD

ξCD Tr{�A[�C�B , �D] + �A[�C, �B�D]}.
(29)
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Note that if ξCD is a symmetric tensor, then

λ̃A = 0, λ̃AB = λ̃B A. (30)

On the other hand, from equation (14) there follows
a relation between (Lρ)A and ρA in the Bloch–Redfield
formalism

(Lρ)A = −λA −
∑

B

λABρB , (31)

where
λA = 1

16

∑

μνσ

(�A)νμRμνσσ , (32)

λAB = 1
4

∑

μνστ

(�A)νμRμνστ (�B)στ . (33)

From the hermiticity property (20) of the Redfield tensor it
follows that λA and λAB are real constants. Formulae (31)–
(33) of the Bloch–Redfield formalism must be compatible
with those derived without using the perturbation theory,
equations (25)–(29). Therefore we have the following
equations

λA = λ̃A, (34)

λAB =
∑

C

fABC hC + λ̃AB , (35)

where λA, λ̃A and λAB , λ̃AB are determined by formu-
lae (32), (28) and (33), (29), respectively. By solving these
systems of equations for constants hC and coefficients ξCD , we
obtain their expressions in the second order approximation of
the perturbation theory in terms of components of the Redfield
tensor.

In order to derive rate equations from equation (4) we
write Hamiltonian H in the general form

H = 1
2

∑

A

�A E A. (36)

Then we obtain the following system of 15 differential
equations for the 15 components ρA:

dρA

dt
=

∑

BC

f ABC EBρC − λA −
∑

B

λABρB . (37)

It is worth noting that the results of this section with
a slight modification can be applied to the study of the
decoherence of any N-level system.

3. Two coupled spin-qubits without interaction with
the environment

Let us study special cases in which the interaction of the
environment on the qubits can be neglected and, therefore, the
reduced density matrix ρ mentioned in section 2 is the density
matrix itself of the closed system of two coupled spin-qubits.
Its time evolution is determined by the von Neumann equation

i
dρ

dt
= [H, ρ]. (38)

Introducing the Pauli matrices σα or τα , α = x, y, z or +,−, 3,
and unit matrices σ0 = 1, τ0 = 1, acting on the spin indices of

the wave functions of the corresponding spin-qubits called the
σ -qubit and τ -qubit, and denoting by ρσ or ρτ the trace of ρ
over the spin indices of the τ -qubit and σ -qubit, respectively,

ρσ = Trτ ρ, ρτ = Trσρ. (39)

Being density matrices of two spin-qubits, ρσ and ρτ have the
general form

ρσ = 1
2 +

∑

α

σαSα(t), ρτ = 1
2 +

∑

α

ταTα(t). (40)

Suppose that at the initial time t = 0 the quantum states of the
two spin-qubits are independent and therefore

ρ(αβ)(0) = Sα(0)Tβ(0), α �= 0, β �= 0. (41)

3.1. Exactly solvable model

Consider the model of two identical spin 1/2 magnetic
particles with their anisotropic axially symmetric Heisenberg
exchange interaction in a constant homogeneous perpendicular
magnetic field. Hamiltonian H has a simple expression

H = E

2
(σ3 + τ3)+ 1

2
J‖σ3τ3 + J⊥(σ+τ− + σ−τ+), (42)

where E is the energy difference of the two levels and J‖, J⊥
are the coupling constants. In this case equation (38) can be
solved exactly. In terms of the components Sα(t) and Tα(t) in
the rhs of equation (40), α = 1, 2, 3 or x , y, z, its solution is
represented by the following expressions:

Sx(t) = 1
2 (cos J (−)t + cos J (+)t)[cos Et Sx(0)−sin Et Sy(0)]

+ 1
2 (cos J (−)t − cos J (+)t)[cos EtTx(0)− sin EtTy(0)]

− (sin J (−)t + sin J (+)t)T3(0)[sin Et Sx (0)

+ cos Et Sy(0)] − (sin J (−)t − sin J (+)t)S3(0)

× [sin EtTx(0)+ cos EtTy(0)], (43)

Sy(t) = 1
2 (cos J (−)t + cos J (+)t)[sin Et Sx (0)+cos Et Sy(0)]

+ 1
2 (cos J (−)t − cos J (+)t)[sin EtTx(0)+ cos EtTy(0)]

+ (sin J (−)t + sin J (+)t)T3(0)[cos Et Sx (0)

− sin Et Sy(0)] + (sin J (−)t − sin J (+)t)S3(0)

× [cos EtTx(0)− sin EtTy(0)], (44)

Sz(t) = 1
2 (1 + cos 2J⊥t)Sz(0)+ 1

2 (1 − cos 2J⊥t)Tz(0)

− sin 2J⊥t[Sx(0)Ty(0)− Sy(0)Tx(0)], (45)

where
J (±) = J‖ ± J⊥. (46)

For Tx(t), Ty(t) and Tz(t) we have similar formulae with the
interchange of the initial values Sα(0) ↔ Tα(0), α = x, y, z.
In terms of expressions of Sα(t) and Tα(t) for free qubits,

Sfree
x (t) = cos Et Sα(0)− sin Et Sy(0),

Sfree
y (t) = sin Et Sα(0)+ cos Et Sy(0),

Sfree
z (t) = Sz(0)

(47)
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and similarly for T free
x , T free

y , T free
z , equations (43)–(45) can be

rewritten in the forms

Sx(t) = 1
2 (cos J (−)t + cos J (+)t)Sfree

x (t)

+ 1
2 (cos J (−)t − cos J (+)t)T free

x (t)

− (sin J (−)t + sin J (+)t)T3(0)S
free
y (t)

− (sin J (−)t − sin J (+)t)S3(0)T
free
y (t), (48)

Sy(t) = 1
2 (cos J (−)t + cos J (+)t)Sfree

y (t)

+ 1
2 (cos J (−)t − cos J (+)t)T free

y (t)

+ (sin J (−)t + sin J (+)t)T3(0)S
free
x (t)

+ (sin J (−)t − sin J (+)t)S3(0)T
free
x (t), (49)

Sz(t) = 1
2 (1 + cos 2J⊥t)Sfree

z (t) + 1
2 (1 − cos 2J⊥t)T free

z (t)

− sin 2J⊥t[Sx(0)Ty(0)− Sy(0)Tx(0)], (50)

and similarly for Tx(t), Ty(t), Tz(t).
Formulae (43)–(45) show that the output QI from the σ -

qubit Sx(t), Sy(t), Sz(t) at t > 0 reflects the presence of the
τ -qubit and also the input QI encoded into it at the initial time
t = 0. This phenomenon can be considered as a physical
mechanism of the QI transfer from the τ -qubit to the σ -qubit.
Similarly, formulae for Tx(t), Ty(t), Tz(t) demonstrate that of
the QI transfer from the σ -qubit to the τ -qubit.

For studying entanglement of two qubits it is convenient
to use collective Dicke states [51]

|e〉 = |11〉, |g〉 = |22〉,

|s〉 = 1√
2
[|21〉 + |12〉], |a〉 = 1√

2
[|21〉 − |12〉] (51)

as the basis vectors. In this basis, matrix elements of ρ have
simple expressions

ρee(t) = ρee(0), ρgg(t) = ρgg(0),

ρss(t) = ρss(0), ρaa(t) = ρaa(0),

ρsa(t) = e−2iJ⊥tρsa(0), ρas(t) = e2iJ⊥tρas(0),

ρeg(t) = e−2iEtρeg(0), ρge(t) = e2iEtρge(0),

ρes(t) = e−i(E+J (−))tρes(0), ρse(t) = ei(E+J (−))tρse(0),

ρgs(t) = e−i(E−J (−))tρgs(0), ρsg(t) = ei(E−J (−))tρsg(0),

ρea(t) = e−i(E+J (+))tρea(0), ρae(t) = ei(E+J (+))tρae(0),

ρga(t) = ei(E−J (+))tρga(0), ρag(t) = e−i(E−J (+))tρag(0).
(52)

It follows that for six classes of two-qubit quantum states with
special initial conditions
class 1:

ρes(0) = ρse(0) = ρea(0) = ρae(0) = ρgs(0) = ρsg(0)

= ρga(0) = ρag(0) = 0,

class 2:

ρeg(0) = ρge(0) = ρes(0) = ρse(0) = ρea(0) = ρae(0)

= ρgs(0) = ρsg(0) = ρga(0) = ρag(0) = 0,

class 3:

ρeg(0) = ρge(0) = ρsa(0) = ρas(0) = ρes(0) = ρse(0)

= ρgs(0) = ρsg(0) = ρga(0) = ρag(0) = 0,

class 4:

ρeg(0) = ρge(0) = ρsa(0) = ρas(0) = ρes(0) = ρse(0)

= ρea(0) = ρae(0) = ρga(0) = ρag(0) = 0,

class 5:

ρeg(0) = ρge(0) = ρsa(0) = ρas(0) = ρes(0) = ρse(0)

= ρea(0) = ρae(0) = ρgs(0) = ρsg(0) = 0,

class 6:

ρeg(0) = ρge(0) = ρsa(0) = ρas(0) = ρes(0) = ρse(0)

= ρag(0) = ρga(0),

ρea(0) = ρae(0)
∗, ρgs(0) = ρsg(0)

∗,

the concurrence of the two-qubit system is t-independent and,
therefore, the degree of the entanglement between two qubits
is conserved. The states of class 6 were called ‘X’ states [30].

3.2. Arbitrary two-spin-qubit system

Different systems of two coupled spin-qubits with complicated
total Hamiltonians H were investigated in
[3, 4, 7, 8, 10, 12, 13, 16, 20]. To study any of them we use
the natural basis |(i1, i2)〉 of the Hilbert space of state vectors
of two spin 1/2 particles,

σ3|(1, i2)〉 = |(1, i2)〉, σ3|(2, i2)〉 = −|(2, i2)〉,
τ3|(i1, 1)〉 = |(i1, 1)〉, τ3|(i1, 2)〉 = −|(i1, 2)〉, (53)

and introduce a double index I to replace the pair (i1i2):
(i1i2) → I .

Denote by |ψμ〉 the eigenstates of the total Hamiltonian
corresponding to the eigenvalues Eμ,

H |ψμ〉 = Eμ|ψμ〉, (54)

and expand them in terms of basis vectors

|ψμ〉 =
∑

i1i2

C (i1i2)
μ |(i1i2)〉 =

∑

I

C I
μ|I 〉. (55)

The 4 × 4 matrix with elements C I
μ is unitary

∑

μ

(C I
μ)

∗(C J
μ) = δI J ,

∑

I

(C I
μ)

∗(C I
ν ) = δμν, (56)

and expansion (55) has following inversion

|I 〉 =
∑

μ

(C I
μ)

∗|ψμ〉. (57)

Consider an arbitrary two-spin-qubit system with a
direct spin–spin coupling and without interactions with the
environment. Denote by ρI J the elements of density matrix ρ
in the natural basis and by ρμν those in the basis of eigenstates
|ψμ〉 of total Hamiltonian:

ρI J (t) = 〈I |ρ(t)|J 〉, ρμν = 〈ψμ|ρ(t)|ψν〉. (58)

5
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Between the two systems of matrix elements there exist the
following relations

ρI J (t) =
∑

μν

C I
μρμν(t)(C

J
ν )

∗, (59)

ρμν(t) =
∑

I J

(C I
μ)

∗ρI J (t)C
J
ν . (60)

Since |ψμ〉 are eigenvectors of H , each matrix element ρμν(t)
has a simple t-dependence

ρμν(t) = e−i(Eμ−Eν )tρμν(0). (61)

From equations (59)–(61) it follows that

ρI J (t) =
∑

μν

∑

K L

e−i(Eμ−Eν ) t C I
μ(C

J
ν )

∗(C K
μ )

∗C L
ν ρK L(0),

(62)
or in the explicit form with pair indices

ρ(i1i2)( j1 j2)(t) =
∑

μν

∑

k1k2

∑

l1l2

e−i(Eμ−Eν )t C (i1i2)
μ (C ( j1 j2)

ν )∗

× (C (k1k2)
μ )∗C (l1l2)

ν ρ(k1k2)(l1l2)(0). (63)

Matrix elements ρ(i1i2)( j1 j2)(t) are expressed in terms of
components ρ(αβ)(t), (αβ) �= (00), α, β = 0, x, y, z or,
equivalently, α, β = 0, 1, 2, 3,

ρ(i1i2)( j1 j2)(t) = 1
4δi1 j1δi2 j2 +

∑

(αβ) �=(00)

(σα)i1 j1(τβ)i2 j2ρ(αβ)(t).

(64)
Inversely we have

ρ(αβ)(t) = 1
4

∑

i1i2

∑

j1 j2

(σα) j1i1(τβ) j2i2ρ(i1i2)( j1 j2)(t). (65)

Using this expression of ρ(αβ)(t) in terms of the matrix
elements, formula (62) for the time evolution of the matrix
elements and formula (64) expressing the matrix elements
in terms of the components at t = 0, we derive a relation
determining the time evolution of components ρ(αβ)(t):

ρ(αβ)(t) = 1
4

∑

i1i2

∑

j1 j2

(σα) j1i1(τβ) j2i2 ·
∑

μν

∑

k1k2

∑

l1l2

e−i(Eμ−Eν )t

× C (i1i2)
μ (C ( j1 j2)

ν )∗(C (k1k2)
μ )∗C (l1l2)

ν

×
[

1
4δk1l1δk2l2 +

∑

γ δ

(σγ )k1l1 (τδ)k2l2ργδ(0)

]
. (66)

For each concrete system with a given total Hamiltonian
H , eigenvalues Eμ and coefficients C (i1i2)

μ in formula (55)
of eigenstates can be calculated by solving the Schrödinger
equation (54). Substituting their values into the rhs of
equation (66), we derive expressions of components ρ(αβ)(t)
containing different numerical coefficients. As particular
cases we obtain formulae for components Sα(t) and Tα(t)
determining reduced density matrices of two spin-qubits.
These formulae demonstrate the physical mechanism of the QI
exchange between two qubits.

Each system with a total Hamiltonian in the form (42) is
a special case when eigenvalues Eμ and coefficients C I

μ are
analytical expressions of its physical parameters. In general,
eigenvalues Eμ can be determined by means of numerical

calculations and all coefficients C I
μ are expressed in terms of

them and physical parameters of the system. The problem is
almost exactly solvable. For example, among four eigenvalues
Eμ of a total Hamiltonian of the form [7, 12, 13, 20]

H = E

2
(σ3 + τ3)+�

2
(σ1 + τ1)+ J‖

2
σ3τ3+J⊥(σ+τ− + σ−τ+),

(67)
there is only one exactly determined eigenvalue E0 =
−(J⊥ + J‖/2), the three others Eμ,μ = 1, 2, 3, are the roots
of a rank three algebraic equation

(
x − J‖

2

)2 (
x − J⊥ + J‖

2

)
− E2

(
x − J⊥ + J‖

2

)

− �2

(
x − J‖

2

)
= 0. (68)

Coefficients C I
μ are expressed in terms of the four eigenvalues

Eμ and the physical parameters E,�, J‖, J⊥ of the system and
can be calculated numerically.

4. Influence of decoherence on qubit–qubit
entanglement

In solids there always exists the interaction of qubits with
the environment. It may generate decoherence of the qubits,
induce an effective interaction between two qubits and/or affect
their entanglement. In order to study separately the influence
of the dissipative interaction of the environment on the qubit–
qubit entanglement let us consider a system of two uncoupled
spin-qubits interacting with the environment. The reduced
density matrix ρ of the system of two uncoupled spin-qubits
can be determined by solving a system of rate equations of the
form (37) with vanishing components E(αβ), α �= 0, β �= 0.
Usually the axially symmetrical system of two identical spin-
qubits with E(±0) = E(0±) = 0, E(30) = E(03) = E is
considered.

The simplest example is the case of the two above-
mentioned identical non-coupled spin-qubits interacting with
two separate noise environments [26, 29, 30, 32, 33, 35, 36]
with the interaction Hamiltonian of the form

Hint =
∑

ξ

[ f ∗
ξ (σ−aσ+

ξ + τ−aτ+ξ )+ fξ (σ+aσξ + τ+aτξ )]

+
∑

ξ

[σ3(g
∗
ξbσ+
ξ + gξb

σ
ξ )+ τ3(g

∗
ξbτ+ξ + gξb

τ
ξ )], (69)

where aσξ , bσξ and aσ+
ξ , bσ+

ξ are the destruction and creation
operators for the bosons in the two noise sources of the σ -
qubit, aτξ , bτξ and aτ+ξ , bτ+ξ are similar operators for the τ -
qubit. Using formula (69) for the interaction Hamiltonian and
equations (14)–(17) we derive the expression of the Liouvillian
superoperator in the Born–Markov approximation

L(2)ρ = 1
2

∑

α,β=x,y,z

cαβ{[σα, ρσβ ] + [σαρ, σβ ] + [τα, ρτβ ]

+ [ταρ, τβ]} (70)
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with the following non-vanishing constants cαβ :

cxx = cyy = π

2

∑

ξ

(1 + 2nξ )| fξ |2δ(ωa
ξ − E),

cxy = −cyx = i
π

2

∑

ξ

| fξ |2δ(ωa
ξ − E),

czz = π

2

∑

ξ

|gξ |2δ(ωb
ξ ),

(71)

where ωa
ξ and ωb

ξ are the energies of the bosons with the
destruction operators aσξ , aτξ and bσξ , bτξ , respectively, in the
two noise sources, nξ is the value of the boson numbers

nξ = 〈aσ+
ξ aσξ 〉 = 〈aτ+ξ aτξ 〉 (72)

in the equilibrium environments at a given temperature. The
system of rate equations has an exact solution. To simplify the
text we present here formulae of this solution in the special case
of the equilibrium environments at zero temperature, nξ = 0.
Using the Dicke basis we have the following expressions of the
elements of the reduced density matrix ρ of the two-spin-qubit
system:

ρee(t) = e−2γ1tρee(0)+ 1
2 (1 − e−γ1t ), (73a)

ρgg(t) = −e−γ1t (1 − e−γ1t )ρee(0)+ e−γ1t

+ 1
2 (1 − e−γ1 t), (73b)

ρss(t) = 1
2 (e

−2γ1t + e−2γ2t )ρss(0)

+ 1
2 (e

−2γ1t − e−2γ2t )ρaa(0)+ 1
2 e−γ1 t(1 − e−γ1t )

× [ρee(0)− ρgg(0)] + 1
2 e−γ1t (1 − e−γ1t ), (73c)

ρaa(t) = 1
2 (e

−2γ1t − e−2γ2t)ρss(0)

+ 1
2 (e

−2γ1t + e−2γ2t )ρaa(0)+ 1
2 e−γ1 t(1 − e−γ1t )

× [ρee(0)− ρgg(0)] + 1
2 e−γ1t (1 − e−γ1t ), (73d)

ρeg(t) = e−2iEt e−2γ2tρeg(0), (73e)

ρge(t) = e2iEt e−2γ2tρge(0), (73 f )

ρes(t) = e−iEt e−(γ1+γ2)tρes(0), (73g)

ρse(t) = eiEt e−(γ1+γ2)tρse(0), (73h)

ρsg(t) = e−iEt e−γ2 t [ρsg(0)+ (1 − e−γ1 t)ρes(0)], (73i )

ρgs(t) = eiEt e−γ2t [ρgs(0)+ (1 − e−γ1 t)ρse(0)], (73 j )

ρea(t) = e−iEt e−(γ1+γ2)tρea(0), (73k)

ρae(t) = eiEt e−(γ1+γ2)tρae(0), (73l)

ρag(t) = e−iEt e−γ2t [ρag(0)− (1 − e−γ1 t)ρea(0)], (73m)

ρga(t) = eiEt e−γ2 t [ρga(0)− (1 − e−γ1 t)ρae(0)], (73n)

ρsa(t) = 1
2 (e

−γ1t + e−2γ2t )ρsa(0)+ 1
2 (e

−γ1t − e−2γ2t)

× ρas(0), (73o)

ρas(t) = 1
2 (e

−γ1t + e−2γ2t )ρas(0)+ 1
2 (e

−γ1t − e−2γ2t)

× ρsa(0), (73p)

where

γ1 = 2π
∑

ξ

| fξ |2δ(ωa
ξ − E), γ2 = 4π

∑

ξ

|gξ |2δ(ωb
ξ ).

(74)

From expressions (73a)–(73p) of the elements of the
reduced density matrix ρ it follows that for the class of
quantum states satisfying conditions

ρes = ρse = ρgs = ρsg = ρea = ρae = ρga = ρag

= ρas = ρsa = 0,

ρge = ρ∗
eg

(75)

at t = 0, these conditions still hold at any t > 0. The
concurrence has a simple expression

C(t) = max{ 0,C1(t),C2(t)} (76)

with

C1(t) = 2|ρge(t)| − [ρaa(t)+ ρss(t)],
C2(t) = |ρss(t)− ρaa(t)| − 2

√
ρgg(t)ρee(t).

(77)

Analogously, for a class of ‘X’-states satisfying conditions

ρeg = ρge = ρes = ρse = ρag = ρga = ρas = ρsa = 0,

ρae = ρ∗
ea, ρsg = ρ∗

gs
(78)

at t = 0, these conditions still hold at any t > 0. The
concurrence is determined by formula (76) with

C1(t) = |ρgs(t)| − √
ρee(t)ρaa(t),

C2(t) = |ρea(t)| − √
ρgg(t)ρss(t).

(79)

There is also another class of ‘X’-states satisfying conditions

ρea = ρae = ρeg = ρge = ρgs = ρsg = ρas = ρsa = 0,

ρse = ρ∗
es, ρag = ρ∗

ga
(80)

at t = 0. These conditions still hold at any t > 0. In this case
instead of formulae (77) we have

C1(t) = |ρga(t)| − √
ρee(t)ρss(t),

C2(t) = |ρes(t)| − √
ρgg(t)ρaa(t).

(81)

Using formulae (77), (79) or (81) and expressions (73a)–(73p)
with given numerical values of decoherence parameters γ1 and
γ2, we can study the time dependence of the concurrence (76)
and obtain the following interesting result [22, 29, 30, 34]: for
many states from the three above-mentioned classes (75), (78)
and (80) with definite initial values of corresponding non-
vanishing matrix elements, the concurrence C(t) is positive in
the interval 0 < t < t1 with some t1, vanishes in the interval
t1 < t < t2 with some t2 and becomes positive again for
some t > t2. This means that two spin-qubits are entangled
in the first interval, non-entangled in the second one and are
entangled again after the t2. At t = t1 the sudden death of
entanglement takes place, and at t = t2 it revives.

5. Exactly solvable models of two coupled spin-qubits
interacting with the environment

Analytical exact solutions of the rate equations of two-spin-
qubit systems are particularly useful for studying the physical

7
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phenomena such as the QI exchange between two spin-qubits
and the time evolution of the qubit–qubit entanglement, as
was shown in the two preceding sections in the special
cases of two coupled spin-qubits without interactions with
the environment and two uncoupled spin-qubits interacting
with the environment. Approximate numerical solutions of
rate equations cannot clearly and completely demonstrate the
above-mentioned phenomena. In general, however, systems of
rate equations for two coupled spin-qubits interacting with the
environment can be solved mainly by means of approximate
numerical methods. Therefore it is worth investigating systems
of two coupled spin-qubits interacting with the environment
which have exactly solvable rate equations. In this section we
review the results of the study on three exactly solvable models.

5.1. Two coupled spin-qubits in a spin-star environment

As a first example consider a system of two coupled spin-qubits
in a spin-star environment consisting of the interacting nuclear
spins in the thermodynamic limit at a finite temperature [6, 52].
All the spin–spin couplings are those of the XY Heisenberg
exchange interactions. It was shown that in the limit of
an infinite number of spins in the environment, the total
Hamiltonian of the system under consideration is equivalent
to that of the system consisting of two coupled spins and
a quantum field of monoenergetic bosons with a interaction
Hamiltonian of the Jaynes–Cummings type [53].

Introduce two sets of Pauli matrices σα and τα acting on
spin indices of wavefunctions and density matrices of two spin-
qubits called the σ -qubit or τ -qubit, respectively, α = x, y, z
or +,−, 3. The system has the following total Hamiltonian

H = E

2
(σ3 + τ3)+ J (σ+τ− + σ−τ+)+ ω0b+b

+ g[(σ+ + τ+)b + (σ− + τ−)b+]. (82)

Denote by |i j, n〉, i, j = 1, 2; n = 0, 1, 2, . . ., the
eigenstates of commuting operators σ3, τ3 and b+b:

σ3|1 j, n〉 = |1 j, n〉, σ3|2 j, n〉 = −|2 j, n〉,
j = 1, 2,

τ3|i1, n〉 = |i1, n〉, τ3|i2, n〉 = −|i2, n〉,
i = 1, 2,

b+b|i j, n〉 = n|i j, n〉, i, j = 1, 2.

(83)

These orthogonal and normalized state vectors form the
Fock basis in the Hilbert space of the state vectors of
the system. This Hilbert space is the direct (infinite)
sum of a one-dimensional subspace V0 with basis vec-
tor |22, 0〉, a three-dimensional subspace V1 with ba-
sis |12, 0〉, |21, 0〉, |22, 1〉 and an infinite number of four-
dimension subspaces Vn, n � 2, with basis vectors
|11, n − 2〉, |12, n − 1〉, |21, n − 1〉, |22, n〉. Subspace V0

contains only one eigenstate |ψ(0)〉 of H with the correspond-
ing eigenvalue E (0)

H |ψ(0)〉 = E (0)|ψ(0)〉, (84)

where
E (0) = −E, (85)

|ψ(0)〉 = |22, 0〉. (86)

In subspace V1 there are three eigenstates |ψ(1)ξ 〉 of H with

corresponding eigenvalues E (1)
ξ :

H |ψ(1)ξ 〉 = E (1)
ξ |ψ(1)ξ 〉, ξ = 0, 1, 2, (87)

where

E (1)
0 = −J, E (1)

1 = − 1
2 (E − ω0 − J )+ 1

2�,

E (1)
2 = − 1

2 (E − ω0 − J )− 1
2�,

(88)

� =
√
(E − ω0 + J)2 + 8g2, (89)

|ψ(1)0 〉 = 1
2 (|12, 0〉 − |21, 0〉),

|ψ(1)i 〉 = A(1)i

1√
2
(|12, 0〉 + |21, 0〉)+ B(1)

i |22, 1〉,

i = 1, 2,

(90)

A(1)1 = B(1)
2 = 1

2

√
1 + J + E − ω0

�
,

B(1)
1 = −A(1)2 = 1

2

√
1 − J + E − ω0

�
.

(91)

In each subspace Vn, n � 2, there are four eigenstates |ψ(n)ξ 〉
of H with corresponding eigenvalues E (n)

ξ :

H |ψ(n)ξ 〉 = E (n)
ξ |ψ(n)ξ 〉, n � 2, ξ = 0, 1, 2, 3, (92)

where

E (n)
0 = (n + 1)ω0 − J, (93)

E (n)
i , i = 1, 2, 3,are three roots of the rank 3 algebraic equation

[x − E − (n − 2)ω0][x − J − (n − 1) ω0][x + E − nω0]
− 2g2(n − 1)[x + E − nω0]
− 2g2n[x − E − (n − 2)ω0] = 0, (94)

and

|ψ(1)0 〉 = 1
2 (|12, n − 1〉 − |21, n − 1〉),

|ψ(n)i 〉 = A(n)i

1√
2
(|12, n − 1〉 + |21, n − 1〉)

+ C (n)
i |22, n〉 + B(1)

i |11, n − 2〉, i = 1, 2, 3,

(95)

A(n)i =
{

1 + g22(n − 1)

[E (n)
i − E − (n − 2)ω0]2

+ g22n

[E (n)
i + E − nω0]2

}−1/2

,

B(n)
i = g

√
2(n − 1)

E (n)
i − E − (n − 2)ω0

A(n)i ,

C (n)
i = g

√
2n

E (n)
i + E − nω0

A(n)i .

(96)
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In the resonance case ω0 = E we have

E (1)
0 = −J, E (1)

1 = 1
2 (J +�res),

E (1)
2 = 1

2 (J −�res), E (n)
1 = (n − 1)ω0,

E (n)
2 = (n − 1)ω0 + J + Jn

2
,

E (n)
3 = (n − 1)ω0 + J − Jn

2
,

�res =
√

J 2 + 8g2, Jn =
√

J 2 + 8(2n − 1)g2.

(97)

Because the total Hamiltonian has eigenvalues and
eigenstates which can be exactly calculated, this model is
exactly solvable. Consider the elements of the total density
matrix ρtot in the eigenstate basis

ρ00(t) = 〈ψ(0)|ρtot(0)|ψ(0)〉,
ρ0m
ξ (t) = 〈ψ(0)|ρtot(0)|ψ(m)ξ 〉,
ρm0
ξ (t) = 〈ψ(m)ξ |ρtot(0)|ψ(0)〉,
ρmn
ξη (t) = 〈ψ(m)ξ |ρtot(0)|ψ(n)η 〉.

(98)

They have following exact expressions

ρ00(t) = ρ00(0), ρ0m
ξ (t) = eiE (m)

ξ tρ0m
ξ (0),

ρm0
ξ (t) = e−iE (m)

ξ tρm0
ξ (0),

ρmn
ξη (t) = e−i[E (m)

ξ −E (n)
η ]tρmn

ξη (0).

(99)

Performing a suitable unitary transformation we can derive
exact analytical expressions for the elements of the total
density matrix in the Fock basis

ρ(i j,n) (kl,m)(t) = 〈i j, n|ρ(t)|kl,m〉. (100)

Consider the reduced density matrix of the system of two
spin-qubits

ρ(i j)(kl)(t) =
∞∑

n=0

ρ(i j,n)(kl,n)(t). (101)

In general each element ρ(i j)(kl)(t) at t > 0 depends on the
initial values of 16 series of matrix elements of the form (100).
However, if at the initial time t = 0 the quantum states of
the two-spin-qubit system and the spin-star environment are
independent and that of the latter is an equilibrium state at a
given temperature, then initial values ρ(i j,n)(kl,m)(0) of all the
elements of ρ in the Fock basis can be expressed in terms of
the initial values of 16 elements of the reduced density matrix
of the two-spin-qubit system defined in equation (101). In this
case the time evolution of the reduced density matrix of this
system can be represented in the form

ρ(i j)(kl)(t) =
∑

i ′ j ′k′l′
C (i ′ j ′)(k′l′)
(i j)(kl) (t)ρ(i ′ j ′)(k′l′)(0) (102)

with completely determined functions C (i ′ j ′)(k′l′)
(i j)(kl) (t).

Besides the special cases with the validity of equa-
tion (102) for the reduced density matrix of two spin-qubits,
there are special cases of another kind. In each special case of
this kind only the matrix elements of ρ in an invariant subspace
Vn with a definite positive integer n are non-vanishing. In V1

we have a set of 9 matrix elements

ρ
(1)
11 = ρ(12,0)(12,0), ρ

(1)
12 = ρ(12,0)(21,0),

ρ
(1)
13 = ρ(12,0)(22,1),

ρ
(1)
21 = ρ(21,0)(12,0), ρ

(1)
22 = ρ(21,0)(21,0),

ρ
(1)
23 = ρ(21,0)(22,1),

ρ
(1)
31 = ρ(22,1)(12,0), ρ

(1)
32 = ρ(22,1)(21,0),

ρ
(1)
33 = ρ(22,1)(22,1),

(103)

and in each Vn with n � 2 we have a set of 16 elements

ρ
(n)
11 = ρ(11,n−2)(11,n−2), ρ

(n)
12 = ρ(11,n−2)(12,n−1),

ρ
(n)
13 = ρ(11,n−2)(21,n−1), ρ

(n)
14 = ρ(11,n−2)(22,n),

ρ
(n)
21 = ρ(12,n−1)(11,n−2), ρ

(n)
22 = ρ(12,n−1)(12,n−1),

ρ
(n)
23 = ρ(12,n−1)(21,n−1), ρ

(n)
24 = ρ(12,n−1)(22,n),

ρ
(n)
31 = ρ(21,n−1)(11,n−2), ρ

(n)
32 = ρ(21,n−1)(12,n−1),

ρ
(n)
33 = ρ(21,n−1)(21,n−1), ρ

(n)
34 = ρ(21,n−1)(22,n),

ρ
(n)
41 = ρ(22,n)(11,n−2), ρ

(n)
42 = ρ(22,n)(12,n−1),

ρ
(n)
43 = ρ(22,n)(21,n−1), ρ

(n)
44 = ρ(22,n)(22,n).

(104)

If at t = 0 all matrix elements not belonging to the set (103)
vanish, then at t > 0 only matrix elements ρ(1)ab (t), a, b = 1, 2,
3, of this set are non-vanishing. They have expressions of the
form

ρ
(1)
ab (t) =

3∑

p,q=1

R pq
ab (t)ρ

(1)
pq (0) (105)

with explicitly calculated functions R pq
ab (t). Similarly, if at

t = 0 all matrix elements not belonging to the set (104)
with a definite number n � 2 vanish, then at t > 0 only
matrix elements ρ(n)ab (t), a, b = 1, 2, 3, 4, of this set are non-
vanishing. They have expressions of the form

ρ
(n)
ab (t) =

4∑

p,q=1

S pq
ab (t)ρ

(n)
pq (0) (106)

with explicitly calculated functions S pq
ab (t).

5.2. Two coupled spin-qubits interacting with two separate
environments

Consider a system of two identical interacting spin-qubits
localized near one another in a constant magnetic field, and
denote by σ±, σ3 and τ±, τ3 the components of the spin
operators representing these spin-qubits. We assume that

9
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Hamiltonian of this system without the interaction of the
environment has the form

HS = E

2
(σ3 + τ3)+ J (σ+τ− + σ−τ+). (107)

The Liouvillian superoperator L is expressed by the
Lindblad formula. Suppose that the interaction of the
environment on a spin-qubit does not depend on the presence
of the other. Then, with the choice of σ+, σ−, σ3 and τ+, τ−, τ3

to be generators of the corresponding SU(2) groups in the
Lindblad formula, the Liouvillian superoperator has the form

Lρ =
∑

i=±,3
αi {σiρσ

+
i − 1

2σ
+
i σiρ − 1

2ρσ
+
i σi + τiρτ

+
i

− 1
2τ

+
i τiρ − 1

2ρτ
+
i τi}. (108)

The constants α−, α+ and α3 in equation (108) are the physical
parameters characterizing the damping, the thermal excitation
and the dephasing of each spin-qubit due to its interactions with
the environment.

The system of rate equations was solved exactly, and
analytical expressions of all 15 components ρ(αβ)(t), (αβ) �=
(00), were derived in [54]. To simplify the text we present
formulae in the special case, when the excitation and the
dephasing are neglected and there is only the damping which
plays the main role, by setting α− = γ, α+ = α3 = 0. In this
case components ρ(+0)(t), ρ(+3)(t), ρ(30)(t) and ρ(+−)(t) have
the following expressions:

ρ(+0)(t) = 1

2
e−iEt e−γ t/2

{[(
J + iγ

2J + iγ
e−iJ t + J − iγ

2J − iγ
eiJ t

)

+
(

J

2J + iγ
eiJ t + J

2J − iγ
e−iJ t

)
e−γ t

]
ρ(+0)(0)

+
[(

J + iγ

2J + iγ
e−iJ t − J − iγ

2J − iγ
eiJ t

)

+
(

J

2J + iγ
eiJ t − J

2J − iγ
e−iJ t

)
e−γ t

]
ρ(0+)(0)

−
[(

J

2J + iγ
e−iJ t + J

2J − iγ
eiJ t

)

−
(

J

2J + iγ
eiJ t + J

2J − iγ
e−iJ t

)
e−γ t

]
ρ(+3)(0)

−
[(

J

2J + iγ
e−iJ t − J

2J − iγ
eiJ t

)

−
(

J

2J + iγ
eiJ t − J

2J − iγ
e−iJ t

)
e−γ t

]
ρ(3+)(0)

}
,

(109)

ρ(+3)(t) = 1

2
e−iEt e−γ t

{[(
J

2J + iγ
e−iJ t + J

2J − iγ
eiJ t

)

+
(

J + iγ

2J + iγ
eiJ t + J − iγ

2J − iγ
e−iJ t

)
e−γ t

]
ρ(+3)(0)

+
[(

J

2J + iγ
e−iJ t − J

2J − iγ
eiJ t

)

+
(

J + iγ

2J + iγ
eiJ t − J − iγ

2J − iγ
e−iJ t

)
e−γ t

]
ρ(3+)(0)

−
[(

J + iγ

2J + iγ
e−iJ t + J − iγ

2J − iγ
eiJ t

)

−
(

J + iγ

2J + iγ
eiJ t + J − iγ

2J − iγ
e−iJ t

)
e−γ t

]
ρ(+0)(0)

−
[(

J + iγ

2J + iγ
e−iJ t − J − iγ

2J − iγ
eiJ t

)

−
(

J + iγ

2J + iγ
eiJ t − J − iγ

2J − iγ
e−iJ t

)
e−γ t

]
ρ(0+)(0)

}
,

(110)

ρ(30)(t) = 1
2 e−γ t {(1 + cos 2J t)ρ(30)(0)

+ (1 − cos 2J t)ρ(03)(0)+ i

2
sin 2J t

× [ρ(+−)(0)− ρ(−+)(0)]} − 1
4 (1 − e−γ t ), (111)

ρ(+−)(t) = 1
2 e−γ t {(1 + cos 2J t)ρ(+−)(0)

+ (1 − cos 2J t)ρ(−+)(0)+ 2i sin 2J t

× [ρ(30)(0)− ρ(03)(0)]}. (112)

Components ρ(−0)(t) and ρ(−3)(t) have expressions obtained
from equations (109) and (110) by a change of the
sign of E and J : E → −E, J → −J , and
the substitutions ρ(+0)(0) → ρ(−0)(0), ρ(0+)(0) →
ρ(0−)(0), ρ(+3)(0) → ρ(−3)(0), ρ(3+)(0) → ρ(3−)(0).
Formulae of ρ(0+)(t), ρ(3+)(t), ρ(0−)(t), ρ(3−)(t), ρ(03)(t) and
ρ(−+)(t) are obtained from expressions of ρ(+0)(t), ρ(+3)(t),
ρ(−0)(t), ρ(−3)(t), ρ(30)(t) and ρ(+−)(t) by the interchanges
ρ(±0)(0) ↔ ρ(0±)(0), ρ(±3)(0) ↔ ρ(3±)(0), ρ(30)(0) ↔
ρ(03)(0) and ρ(+−)(0) ↔ ρ(−+)(0). For ρ(++)(t), ρ(−−)(t) and
ρ(33)(t) we have following expressions:

ρ(++)(t) = e−2iEt e−γ t ρ(++)(0), (113)

ρ(−−)(t) = e2iEt e−γ t ρ(−−)(0). (114)

ρ(33)(t) = e−2γ tρ(33)(0)− e−γ t (1 − e−γ t )

× [ρ(30)(0)+ ρ(03)(0)] + 1
4 (1 − e−γ t )2. (115)

Expressions of ρ(α0)(t) = Sα(t)/2 and ρ(0α)(t) =
Tα(t)/2, α = ±, 3, determine the reduced density matrices
ρσ (t) and ρτ (t) of two spin-qubits in the presence of their
coupling and the interaction with the environment. Suppose
that at the initial time t = 0 the quantum states of two
spin-qubits are independent. Then these expressions for Sα(t)
and Tα(t) demonstrate the mutual dependence of the reduced
density matrices of two spin-qubits: S±(t) depends not only
on S±(0), but also on S3(0) and T±(0); S3(t) depends not only
on S3(0), but also on T3(0), S±(0) and T±(0), and vice versa.
They exhibit the quantum information transfer from a spin-
qubit to the second one due to their coupling in the presence
of decoherence.

5.3. Two coupled spin-qubits interacting with a common
environment

In the case of the interaction of both spin-qubits with one
and the same environment besides the individual damping,
excitation and dephasing of each spin-qubit there also take
place the simultaneous collective damping, excitation and
dephasing of both spin-qubits. Instead of equation (108) for the
Liouvillian superoperator we now have the following formula

10
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Lρ =
∑

i=±,3
αi {σiρσ

+
i − 1

2σ
+
i σiρ − 1

2ρσ
+
i σi + τiρτ

+
i

− 1
2τ

+
i τiρ − 1

2ρτ
+
i τi} +

∑

i=±,3
α′

i {σiρτ
+
i − 1

2τ
+
i σiρ

− 1
2ρτ

+
i σi + τiρσ

+
i − 1

2σ
+
i τiρ − 1

2ρσ
+
i τi},

αi � α′
i � 0. (116)

To simplify the text we consider only the dampings (individual
and collective) which play the main role, and set α− =
γ, α′− = χ, χ � γ, α+ = α′+ = α3 = α′

3 = 0. In this
case the rate equations have the following exact solution:

ρ(+0)(t) = 1

2
e−iEt

{
e−(γ+χ)t/2

2J + iγ

[(
J + i

χ

2
+ iγ

)
e−iJ t

+
(

J − i
χ

2

)
eiJ t e−γ t

]
+ e−(γ−χ)t/2

2J − iγ

×
[(

J + i
χ

2
− iγ

)
eiJ t +

(
J − i

χ

2

)
e−iJ t e−γ t

]}

× ρ(+0)(0)+ 1

2
e−iEt

{
e−(γ+χ)t/2

2J + iγ

×
[(

J + i
χ

2
+ iγ

)
e−iJ t +

(
J − i

χ

2

)
eiJ t e−γ t

]

− e−(γ−χ)t/2

2J − iγ

[(
J + i

χ

2
− iγ

)
eiJ t

+
(

J − i
χ

2

)
e−iJ t e−γ t

]}
ρ(0+)(0)

− 1

2
e−iEt

(
J − i

χ

2

){
e−(γ+χ)t/2

2J + iγ
[e−iJ t − eiJ t e−γ t ]

+ e−(γ−χ)t/2

2J − iγ
[eiJ t − e−iJ t e−γ t ]

}
ρ(+3)(0)

− 1

2
e−iEt

(
J − i

χ

2

){
e−(γ+χ)t/2

2J + iγ
[e−iJ t − eiJ t e−γ t ]

− e−(γ−χ)t/2

2J − iγ
[eiJ t − e−iJ t e−γ t ]

}
ρ(3+)(0), (117)

ρ(+3)(t) = 1

2
e−iEt

{
e−(γ+χ)t/2

2J + iγ

[(
J − i

χ

2

)
e−iJ t

+
(

J + i
χ

2
+ iγ

)
eiJ t e−γ t

]
+ e−(γ−χ)t/2

2J − iγ

×
[(

J − i
χ

2

)
eiJ t +

(
J + i

χ

2
− iγ

)
e−iJ t e−γ t

]}

× ρ(+3)(0)+ 1

2
e−iEt

{
e−(γ+χ)t/2

2J + iγ

×
[(

J − i
χ

2

)
e−iJ t +

(
J + i

χ

2
+ iγ

)
eiJ t e−γ t

]

− e−(γ−χ)t/2

2J − iγ

[(
J − i

χ

2

)
eiJ t +

(
J + i

χ

2
− iγ

)

× e−i J t e−γ t
]}
ρ(3+)(0)− 1

2
e−iEt

{
e−(γ+χ)t/2

2J + iγ

×
(

J + i
χ

2
+ iγ

)
[e−iJ t − eiJ t e−γ t ]

+ e−(γ−χ)t/2

2J − iγ

(
J + i

χ

2
− iγ

)
[eiJ t − e−i J t e−γ t ]

}

× ρ(+0)(0)− 1

2
e−iEt

{
e−(γ+χ)t/2

2J + iγ

(
J + i

χ

2
+ iγ

)

× [e−iJ t − eiJ t e−γ t ] − e−(γ−χ)t/2

2J − iγ

(
J + i

χ

2
− iγ

)

× [eiJ t − e−iJ t e−γ t ]
}
ρ(0+)(0), (118)

ρ(−0)(t) and ρ(−3)(t) have similar expressions with the change
of the signs of E and J , E → −E, J → −J ,
and the substitutions ρ(+0)(0) → ρ(−0)(0), ρ(0+)(0) →
ρ(0−)(0), ρ(+3)(0) → ρ(−3)(0), ρ(3+)(0) → ρ(3−)(0),

ρ(30)(t) = 1

4

[
γ − χ

γ + χ
e−(γ−χ)t + γ + χ

γ − χ
e−(γ+χ)t

− 4
χ2

γ 2 − χ2
e−2γ t + 2e−γ t cos 2J t

]
ρ(30)(0)

+ 1

4

[
γ − χ

γ + χ
e−(γ−χ)t + γ + χ

γ − χ
e−(γ+χ)t

− 4
χ2

γ 2 − χ2
e−2γ t − 2e−γ t cos 2J t

]
ρ(03)(0)

− 1
8 [e−(γ−χ)t − e−(γ+χ)t − 2ie−γ t sin 2J t]ρ(+−)(0)

− 1
8 [e−(γ−χ)t − e−(γ+χ)t + 2ie−γ t sin 2J t]ρ(−+)(0)

− 1

2

[
χ

γ + χ
e−(γ−χ)t − χ

γ − χ
e−(γ+χ)t

+ 2
χ2

γ 2 − χ2
e−2γ t

]
ρ(33)(0)+ 1

8

[
γ

γ + χ
e−(γ−χ)t

+ γ

γ − χ
e−(γ+χ)t − 2

χ2

γ 2 − χ2
e−2γ t − 2

]
, (119)

ρ(+−)(t) = 1
4 [e−(γ−χ)t + e−(γ+χ)t + 2e−γ t cos 2J t]ρ(+−)(0)

+ 1
4 [e−(γ−χ)t + e−(γ+χ)t − 2e−γ t cos 2J t]ρ(−+)(0)

− 1

2

[
γ − χ

γ + χ
e−(γ−χ)t − γ + χ

γ − χ
e−(γ+χ)t

+ 4
χγ

γ 2 − χ2
e−2γ t − 2ie−γ t sin 2J t

]
ρ(30)(0)

− 1

2

[
γ − χ

γ + χ
e−(γ−χ)t − γ + χ

γ − χ
e−(γ+χ)t

+ 4
χγ

γ 2 − χ2
e−2γ t + 2ie−γ t sin 2J t

]
ρ(03)(0)

+
[

χ

γ + χ
e−(γ−χ)t + χ

γ − χ
e−(γ+χ)t

− 2
χγ

γ 2 − χ2
e−2γ t

]
ρ33(0)− 1

4

[
γ

γ + χ
e−(γ−χ)t

− γ

γ − χ
e−(γ+χ)t + 2

χγ

γ 2 − χ2
e−2γ t

]
, (120)

ρ(0+)(t), ρ(3+)(t), ρ(0−)(t), ρ(3−)(t), ρ(03)(t) and ρ(−+)(t) are
obtained from the expression of ρ(+0)(t), ρ(+3)(t), ρ(−0)(t),
ρ(−3)(t), ρ(30)(t) and ρ(+−)(t), respectively, by the inter-
changes ρ(±3)(0) ↔ ρ(3±)(0), ρ(30)(0) ↔ ρ(03)(0) and
ρ(−+)(0) ↔ ρ(+−)(0),

ρ(++)(t) = e−γ t e−2iEtρ(++)(0), (121)

ρ(−−)(t) = e−γ t e2iEtρ(−−)(0), (122)

11
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ρ(33)(t) =
[
−1

2

γ − χ

γ + χ
e−(γ−χ)t − 1

2

γ + χ

γ − χ
e−(γ+χ)t

+ γ 2 + χ2

γ 2 − χ2
e−2γ t

]
[ρ(03)(0)+ ρ(30)(0)]

+ 1
4 [e−(γ−χ)t − e−(γ+χ)t ][ρ(+−)(0)+ ρ(−+)(0)]

+
[

χ

γ + χ
e−(γ−χ)t − χ

γ − χ
e−(γ+χ)t

+ γ 2 + χ2

γ 2 − χ2
e−2γ t

]
ρ(33)(0)− 1

4

[
γ

γ + χ
e−(γ−χ)t

+ γ

γ − χ
e−(γ+χ)t − γ 2 + χ2

γ 2 − χ2
e−2γ t

]
+ 1

4
. (123)

In the special case, when the collective damping is neglected
and therefore χ = 0, formulae (117)–(123) are reduced to the
corresponding ones (109)–(115), respectively, for the system of
two coupled identical spin-qubits interacting with two separate
environments.

There is another interesting special case of two coupled
identical spin-qubits with both individual and collective
damping: that with χ = γ . It takes place, for example,
when the Hamiltonian of the interaction between the spin-qubit
and the common environment has the following symmetrical
expression

Hint =
∑

ξ

[ f ∗
ξ (σ− + τ−)a+

ξ + fξ (σ+ + τ+)aξ ], (124)

where aξ and a+
ξ are the destruction and creation operators

of the bosonic excitations in the environment. In this case
the reduced density matrix of the two-spin-qubit system
has following asymptotic behavior in the limit t → ∞:
ρ(30)(t), ρ(03)(t), ρ(+−)(t), ρ(−+)(t), and ρ(33)(t) tend to limits
which can be finite or vanishing, ρ(++)(t) and ρ(−−)(t) tend
to zero, but ρ(±0)(t), ρ(0±)(t), ρ(±3)(t) and ρ(3±)(t), are still
coherently oscillating without damping, namely

ρ(±0)(t) ≈ −ρ(0±)(t) ≈ −ρ(±3)(t) ≈ ρ(3±)(t)
≈ 1

4 e∓i(E−J )t [ρ(±0)(0)− ρ(0±)(0)
− ρ(±3)(0)+ ρ(3±)(0)]. (125)

The appearance of the asymptotic coherent oscillations (125)
without damping signifies the existence of some asymptoti-
cally decoherence free subspace in the Hilbert space of the state
vectors of the two-spin-qubit system. To affirm this statement
it is convenient to write explicit analytical expressions for the
elements of the reduced density matrix ρ in the Dicke basis,
consider their asymptotic behavior at t → +∞ and obtain

ρgg(t) ≈ 1 − ρaa(0), ρaa(t) ≈ ρaa(0),

ρga(t) ≈ ei(E−J )tρga(0), ρag(t) ≈ e−i(E−J )tρag(0),

ρss(t) ≈ ρee(t) ≈ ρes(t) ≈ ρse(t) ≈ ρeg(t)

≈ ρge(t) ≈ ρsa(t) ≈ ρas(t) ≈ ρes(t)

≈ ρse(t) ≈ ρea(t) ≈ ρae(t) ≈ 0.

(126)

The possible existence of decoherence free subspaces in
Hilbert spaces of the state vectors of qubit systems has been
discussed by many authors [55–59]. Here we have explicitly
demonstrated the existence of an asymptotically decoherence
free subspace of quantum states of two spin-qubit systems.

6. Conclusion

The results of a series of theoretical studies on quantum
dynamics of two-spin-qubit systems have been presented in
an unified style. The decoherence of the systems due to the
interaction of spin-qubits with the environment was considered
in the Markovian approximation. After presenting the general
method for deriving the rate equations, different concrete
models of two-spin-qubit systems were investigated. The rate
equations of axially symmetric systems of two coupled spin-
qubits, non-interacting or interacting with the environment,
are exactly solvable, and analytical expressions of their exact
solutions explicitly exhibit the physical mechanism of the QI
exchange between two spin-qubits—the mutual dependence of
QIs encoded into them. It was shown also how to apply the
reasonings presented in the study of exactly solvable models to
the investigation of two spin-qubits with more complicated rate
equations, which can be solved only by means of approximate
numerical methods. For an axially symmetric system of
two spin-qubits interacting with a common environment
its asymptotically decoherence free subspace was explicitly
constructed.

In principle, solutions of rate equations of two spin-qubits
can also be used for the study of qubit–qubit entanglement. In
view of the appearance of a recent review on entanglement [60]
we consider only one interesting physical phenomenon which
was not mentioned in that review: entanglement sudden death
and revival in the case of two uncoupled spin-qubits due to their
interaction with the environment.

In recent works [61–68] an interest has arisen in the
theoretical investigation of the quantum state transfer along
spin-qubit chains. The calculation methods and physical
reasonings presented in this topical review can be extended to
the study of quantum state transfer not only along spin-qubit
chains, but also in other many-spin-qubit systems.
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